Kamis, 27 September 2012

makalah uji chisquare

BAB I
PENDAHULUAN

A.    Latar Belakang Penulisan
Pengolahan data merupakan bagian vital bagi setiap organisasi bisnis dan untuk setiap pengambilan keputusan managemen yang sangat signifikan. Hasil dari pengolahan data tersebut menjadi dasar bagi perencanaan jangka panjang perusahaan. Dalam area fungsional keuangan, informasi dari data yang diambil  memberikan dasar dalam menentukan anggaran dan pengendalian biaya. Pada bagian pemasaran, informasi tersebut dibutuhkan untuk merencanakan produk baru, kompensasi tenaga penjual, dan beberapa keputusan penting lainnya
Seperti yang kita ketahui, bahwa kegiatan menganalisis akan selalu ada pada kegiatan sehari-hari hal tersebut yang melatarbelakangi penulis menyusun makalah ini untuk menambah dan melatih pemahaman tentang pengolahan data mentah menjadi informasi.
Maka dalam hal ini, penulis melakukan pengujian terhadap suatu objek yaitu Usia Kepala Keluarga yang ada di Kp. Papanggungan Rt. 08 dan 09 Rw. 13 Desa Mekarsari.
B.    Perumusan Masalah
Dari uraian yang telah diberikan dalam latar belakang masalah, dapat dirumuskan sebagai berikut:
·       Bagaimana mengolah data yang telah diperoleh disekitar kita menjadi sebuah informasi?
·       Bagaimana mengaplikasikan teori pada data di kehidupan nyata?
C.    Maksud dan Tujuan Penulisan
            Adapun tujuan dari penyusunan makalah ini adalh sebagi berikut:
·       Mengetahui cara mengolah data yang diperoleh.
·       Mengetahui aplikasi teori yang telah disampaikan di perkuliahan  dengan data pada kehidupan nyata.

BAB II
LANDASAN TEORI

A. Pengertian Uji Chi-Square
      Uji chi-square adalah salah satu uji statistic non parametik yang cukup sering digunakan dalam penelitian. Uji chi-square ini bias diterapkan untuk pengujian kenormalan data, pengujian data yang berlevel nominal atau untuk menguji perbedaan dua atau lebih proporsi sampel. Uji chi-square diterapkan pada kasus dimana akan diuji apakah frekuensi yang akan di amati (data observasi) bebeda secara nyata ataukah tidak dengan frekuensi yang diharapkan (expected value). Chi-square Test atau Uji Chi-square adalah teknik analisis yang digunakan untuk menentukan perbedaan frekuensi observasi (Oi) dengan frekuensi ekspektasi atau frekuensi harapan (Ei) suatu kategori tertentu. Uji ini dapatdilakukan pada data diskrit atau frekuensi.
      Pengertian chi square atau chi kuadrat lainnya adalah sebuah uji hipotesis tentang perbandingan antara frekuensi observasi dengan frekuensi harapan yang didasarkan oleh hipotesis tertentu pada setiap kasus atau data (diktat 2009). Chi kuadrat adalah pengujian hipotesis tentang perbandingan antara frekuensi sampel yang benar–benar terjadi (Haryono,1994). Chi kuadrat biasanya di dalam frekuensi observasi berlambangkan dengan frekuensi harapan yang didasarkan atas hipotesis dilambangkan . Ekspresi matematis tentang distribusi chi kuadrat hanya tergantung pada suatu parameter, yaitu derajat kebebasan (d.f.).
      Chi kuadrat mempunyai masing–masing nilai derajat kebebasan, yaitu distribusi (kuadrat standard normal) merupakan distribusi chi kuadrat dengan d.f. = 1, dan nilai variabel tidak bernilai negative. Kegunaan dari chi square untuk menguji seberapa baik kesesuaian diantara frekuensi yang teramati dengan frekuensi harapan yang didasarkan pada sebaran yang akan dihipotesiskan, atau juga menguji perbedaan antara dua kelompok pada data dua kategorik untuk dapat menguji signifikansi asosiasi dua kelompok pada data dua katagorik tersebut (Sri,1990).
      Syarat agar uji Chi-Square dapat digunakan adalah jumlah sel yang nilai espektasinya kurang dari 5 tidak ebih dari 20 % dari sel yang ada.Namun apabila hal ini terjadi SPSS akan memberikan peringatan dan anda harus menggunakan uji chi-square dengan koreksi.Jika hal ini terjadi pada tebel 2 baris dan 2 kolom,sebaiknya anda menggunakan uji eksak dan Fisher yang di tampilkan pada bagian bawah table uji statistik.
Rumus:
X2 = Σ ( O – E )2
       E

O : nilai Observasi (pengamatan)
E : nilai Expected (harapan)
Df = (b-1) (k-1)
b          : jumlah baris
k          : jumlah kolom

B. Kegunaan Chi-Square
            Adapun kegunaan dari uji Chi-Square, adalah :
1. Ada tidaknya asosiasi antara 2 variabel (Independent test)
2. Apakah suatu kelompok homogen atau tidak (Homogenity test)
3. Uji kenormalan data dengan melihat distribusi data (Goodness of fit test)
C. Uji Kenormalan Data Dengan Chi-Square.
      Salah satu bentuk probabilitas yang penting peranannya dalam statistic inferensia adalah distribusi normal. Maka setelah suatu kelompok data diolah dengan statistic deskriptif atau telah diketahui nilai rata-rata, variaans dan sebagainya, sebelun data tersebut diolah dengan statistik inferensia data tersebut seharusnya diuji apaka data tersebut berdistribusi normal atau tidak.
      Hal ini penting mengingat pengolahan statistik terbagi atas sstatistik parametik dan statistik non parametik. Pengolahan data menggunakan statistik parametik memiliki syarat diantaranya bahwa data harus berdistribusi normal, artinya data yang tidak berdistribusi normal tidak dapat diolah menggunakan statistik parametik tetapi hanya dapat diolah menggunakan distribuasi non parametik.
      Uji kenormalan data dapat dilakukan dengan menggunakan kertas peluang normal, uji lilliefors, uji chi-square dan lainnya.
D. Langkah-Langkah Uji Kenormalan
      Langkah-langkah dalam menguji kenormalan suatu data adalah sebagai berikut:
1.     Ubah data ke dalam bentuk table seperti dibawah ini.
BB
BA
Oi
z1
z2
p1
p2
P
Ei



























Kolom BB diisi dengan batas bawah kelas. Kolom BA diisi dengan batas atas kelas. Sedangkan kolom Oi diisi dengan frekuensi dari masing-masing kelas.

Kemudian kolom z1dan z2 diisi dengan menggunakan  rumus :
z=x-xS
Dimana nilai x diperoleh dari kolom BB untuk z1 dan kolom BA untuk z2. nilaix  merupakan rata-rata  dan nilai S merupakan simpangan baku atau standar deviasi. Dalam excel ditulis
=(sel BB-sel rata-rata)/ sel simpangan baku
Untuk mengisi kolom p1 dan p2, gunakan fungsi NORMSDIST. Secara umum rumus untuk fungsi ini ditulis :
=NORMSDIST(z)
Selanjutnya kolom P merupakan nilai selisih dari p1 - p2. Sedangkan kolom Ei (expected value) diisi dengan mengalikan nilai pada P dengan jumlah data.
2.     Setelah didapat nilai Oi dan Ei. Selanjutnya mengitung Chi-square  dengan menggunakan fungsi CHITEST dan CHIINV,  maka diperoleh :
Ø  Mencari nilai Chi-square probabilitas.
=CHITEST(actual_range, expected_range)
Ø  Mencari nilai  Chi-square hitung.
=CHIINV(probability, degrees_freedom)
3.     Setelah nilai  Chi-square hitung diperoleh maka selanjutnya mencari nilai  Chi-square tabel dimana nilai Chi-square tabel diperoleh dengan menggunakan fungsi CHIINV. Hanya untuk probabilitas disesuaikan dengan taraf signifikannya.
==CHIINV(0.05,1)
C. Analisis Hasil
·       Membuat hipotesis :
H0 : Data Berdistribusi Normal.
H1 : Data Tidak Berdistribusi Normal
Uji antara beberapa k proporsi
Pengujian chi kuadrat dapat digunakan untuk menguji kesamaan dari dua proporsi atau lebih. Pengujian kesamaan proporsi sama dengan pengujian independensi.
1. Uji Proporsi yang Dihipotesiskan  : nilai proporsi yang dihipotesiskan
d.f. = k – m – 1
2. Uji Beda Dua Proporsi
d.f. = (r - 1)(k - 1)
3. Uji Beda k Proporsi  : hipotesis nol tidak benar.
d.f. = (r - 1)(k - 1) 
Statistik chi kuadrat untuk menguji kebebasan dapat juga diterapkan untuk menguji apakah k populasi binom memiliki parameter yang sama p. Sesungguhnya uji ini merupakan perluasan uji yang dijelaskan anara dua proporsi menjadi selisih antara k populasi.
Alternatifnya bahwa populasi proporsi itu tidak semuanya sama yang (ekivalen) dengan pengujian bahwa terjadinya keberhasilan atau kegagalan tidak bergantung pada populasi yang diambil sampelnya. Menghitung di dalam uji proporsi ini frekuensi harapan dihitung seperti cara yang diterangkan sama dengan uji kebebasan dan bersama–sama dengan frekensi yang teramati perhitungan menggunakan rumus dari uji kebebasan, yaitu (Walpole,1995) Dan dengan:
V = (2 - 1)(k - 1) = k – 1
Mengambil wilayah kritik diderajat bebas yang berbentuk , maka dapat disimpulkan mengenai tidak semuanya sama
·       Kaidah keputusan :
Jika Chi-square  hitung < Chi-square  tabel, maka H0 diterima. Artinya data berdistribusi normal.
Jika Chi-square  hitung > Chi-square  tabel. maka H0 ditolak. Artinya data tidak berdistribusi normal.
·       Pengambilan keputusan
Dari hasil perhitungan diperoleh nilai Chi-square  hitung sebesar 1.546355 dan  Chi-square  tabel sebesar 3.841459. Sehingga  didapat hasil Chi-square  hitung < Chi-square  tabel, maka H0 diterima.


BAB III
PENGUMPULAN DAN PENGOLAHAN DATA

A.    Pengumpulan data
Studi kasus adalah masalah nyata yang ada dikehidupan sehari-hari. Studi kasus ini diambil dari simulasi percobaan yang pernah dilakukan.
Kegiatan pengambilan data dan wawancara dilaksanakan pada:
Hari/tanggal                : Rabu, 2 November 2011
Waktu                         : 13.00 s.d 14.00 WIB
Media                          : Wawancara Langsung
Narasumber                : Ketua Rt. 08 dan 09
Data yang diambil adalah sebagai berikut :

No
KK
Usia
Rt. 08
1
KK1
43
2
KK2
33
3
KK3
32
4
KK4
40
5
KK5
58
6
KK6
42
7
KK7
56
8
KK8
75
9
KK9
51
10
KK10
28
11
KK11
37
12
KK12
25
13
KK13
35
14
KK14
37
15
KK15
53
No
KK
Usia
16
KK16
27
17
KK17
33
Rt. 09
18
KK18
40
19
KK19
32
20
KK20
56
21
KK21
43
22
KK22
62
23
KK23
35
24
KK24
42
25
KK25
46
26
KK26
38
27
KK27
61
28
KK28
45
29
KK29
72
30
KK30
43

B. Pengolahan Data
            Data diatas diolah dalam Micr. Excel sebagai berikut :
Diketahui :
xmax
75
xmin
25
BK
6
R
50
interval
8.3333333
Xmax merupakan nilai tertinggi dari data. Xmin merupakan nilai terkecil dari data, BK merupakan banyak kelas, R merupakan Range dan interval merupakan panjang kelas.
Maka, tabel distribusi frekuensi dan histogramnya adalah :

TB
TA
Frequency
25
33
7
34
42
9
43
51
6
52
60
4
61
69
2
70
78
2

Dari hasil pengujian statistik deskriptif melalui Micr. Excel diperoleh data sebagai berikut :

Usia
Mean
44
Standard Error
2.337107
Median
42
Mode
43
Standard Deviation
12.80086
Sample Variance
163.8621
Kurtosis
0.11529
Skewness
0.797472
Range
50
Minimum
25
Maximum
75
Sum
1320
Count
30

Rata-rata                     :  44
Standar Deviasi          : 12.80086
n (jumlah)                   : 30
Dengan melakukan langkah-langkah pengujian kenormalan seperri pada teori yaitu:
1. Mengubah data ke dalam bentuk tabel  dibawah ini.

BB
BA
Oi
zi
z2
p1
p2
P
Ei
24.5
33.5
7
-1.5
-0.8
0.06
0.21
0.14
4.27
33.5
42.5
9
-0.8
-0.1
0.21
0.45
0.25
7.42
43.5
51.5
6
0.0
0.6
0.48
0.72
0.24
7.10
53.5
60.5
4
0.7
1.3
0.77
0.90
0.13
3.91
63.5
69.5
2
1.5
2.0
0.94
0.98
0.04
1.22
73.5
78.5
2
2.3
2.7
0.99
1.00
0.01
0.21






2. Setelah didapat nilai Oi dan Ei. Selanjutnya mengitung Chi-square  dengan      menggunakan fungsi CHITEST dan CHIINV,  maka diperoleh :

Oi
Ei
16
11.69
6
7.10
8
5.34

Ø  Mencari nilai Chi-square probabilitas.
Oi
Ei
Chitest
16
11.69
0.213675
6
7.10
8
5.34
Maka diketahui Chi-square probabilitas adalah 0.213675
Ø  Mencari nilai  Chi-square hitung.
Oi
Ei
chitest
chiinv
16
11.69
0.213675
1.546355
6
7.10
8
5.34
Maka diketahui Chi-square  hitung adalah 1.546355
3. Setelah nilai  Chi-square hitung diperoleh maka selanjutnya mencari nilai  Chi-square tabel dimana nilai Chi-square tabel diperoleh dengan menggunakan fungsi CHIINV. Hanya untuk probabilitas disesuaikan dengan taraf signifikannya. CHIINV  dengan taraf signifikannya adalah 5% atau 0.05. Maka didapat
Oi
Ei
chitest
chiinv
chinv 5%
16
11.69
0.213675
1.546355
3.841459
6
7.10
8
5.34
nilai  Chi-square tabel adalah 3.841459.
C. Analisis Hasil
·       Membuat hipotesis :
H0 : Data Berdistribusi Normal.
H1 : Data Tidak Berdistribusi Normal
·       Kaidah keputusan :
Jika Chi-square  hitung < Chi-square  tabel, maka H0 diterima. Artinya data berdistribusi normal.
Jika Chi-square  hitung > Chi-square  tabel. maka H0 ditolak. Artinya data tidak berdistribusi normal.
·       Pengambilan keputusan
Dari hasil perhitungan diperoleh nilai Chi-square  hitung sebesar 1.546355 dan  Chi-square  tabel sebesar 3.841459.
Sehingga  didapat hasil Chi-square  hitung < Chi-square  tabel, maka H0 diterima.
Data yang didapat adalah data yang berdistribusi normal.
BB
BA
Nilai Tengah
24.5
33.5
29
33.5
42.5
38
43.5
51.5
47.5
53.5
60.5
57
63.5
69.5
66.5
73.5
78.5
76














BAB IV
PENUTUP

A.    Kesimpulan
Dari data diatas saya menyimpulkan bahwa data yang saya peroleh dari narasumber, merupakan Data Berdistribusi Normal berdasarkan pengujian Chi-square yang telah dilakukan.
B.    Penutup
      Saya menyadari bahwa makalah ini masih jauh dari sempurna, oleh karena itu kritik dan saran dari semua pihak yang bersifat membangun selalu kami harapkan demi kesempurnaan makalah ini.
      Akhir kata, saya sampaikan terima kasih kepada semua pihak yang telah berperan serta dalam penyusunan makalah ini dari awal sampai akhir.


DAFTAR PUSTAKA

·        Fransisca, deka. 2010, UJI BEDA PROPORSI (CHI – SQUARE), (tersedia pada URL:   http://dekafransiscamarthadewi.blogspot.com/2010/06/uji-beda-proporsi-chi-square.html pada tanggal 6 november 2011 pukul 8.51 WIB)
·        Satria, Eri. 2011, Labkom STIE YASA ANGGANA GARUT.
·       Sofyan, oke. 2010, UJI BEDA PROPORSI (CHI – SQUARE), (tersedia pada URL:  http://okeita-oke.blogspot.com/2010/02/chi-square.html pada tanggal 8 november 2011 pukul 17.15 WIB)


0 komentar:

:a: :b: :c: :d: :e: :f: :g: :h: :i: :j: :k: :l: :m: :n:

Poskan Komentar